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This paper describes an experimental study of free convection in an enclosed rect- 
angular cavity, the end walls of which are maintained a t  uniform but different 
temperatures. The experiments are carried out for a variety of Rayleigh numbers, 
R = agATh4/~ul ,  and aspect ratios, L = l /h ,  for fluids with Prandtl number u 2 10. 
For R N 0(103) it is shown that the basic structure of the flow field is a single two- 
dimensional cell for 0.25 < L < 9. When R > 0(104) the boundary layers on the 
vertical walls control the flow field, but the basic overall structure remains unicellular. 
At greater values of R secondary vortices appear for all L 2 0.5. As R increases the 
intensity and then the number of these vortices increases. Measurements of the end- 
wall boundary-layer profiles at  different values of R and L confirm Gill’s boundary- 
layer analysis. The effects of variations of viscosity with temperature are discussed 
in the context of the observed boundary-layer profiles. 

Core shear profiles and mass flux measurements are also reported. For L = 1 the ob- 
served shear profiles are in good agreement with numerical solutions of the Boussinesq 
equations. However, when L > 1 the observations suggest that the horizontal 
boundary layers have a significant effect on the core flow field. The stream function is 
demonstrated to be L-dependent in the boundary-layer regime, where variations 
due to R are second order. Similarities between the results of the present work and 
earlier observations by Elder and by Seki, Fukusaka & Inaba for tall slender 
cavities (L  < 1) are discussed. 

1. Introduction 
When a fluid is subjected to a horizontal temperature gradient, motion is generated 

even for temperature differentials which are infinitesimally small. The explanation for 
this motion follows from hydrostatics, see Landau & Lifshitz (1959). If the temperature 
distribution in a fluid in a gravitational field is a function of any co-ordinate other 
than the vertical, there is no pressure distribution to balance the thermally induced 
buoyancy force. The simplest steady state is the single two-dimensional cell that 
occurs when the applied temperature gradient is a function of one horizontal com- 
ponent. Then the fluid rises in the region of greatest heating, and moves towards the 
cooler region where it descends and returns to its original position. When the aspect 
ratio L is large, end effects can be neglected; this simple shearing motion is known 
to meteorologists as a Hadley cell in recognition of Hadley’s (1735) pioneering paper 
on atmospheric circulations. 
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Compared with the understanding developed on the Rayleigh-BBnard system, the 
present understanding of the motion induced by a temperature gradient normal to 
gravity is much more rudimentary. Some features of the flow field were derived by 
Batchelor (1954) who obtained estimates of the Nusselt number for the conduction 
regime, R+O, and the intermediate regime, R < O(104). He also demonstrated that 
the flow is uniquely determined by three parameters: the Rayleigh number R, the 
Prandtl number a, and the aspect ratio L. At large Rayleigh numbers, R N O(lO5), 
Batchelor asserted that the flow consists of a core of constant temperature and vorticity 
surrounded by thermal and viscous boundary layers on the cavity walls. However, the 
experimental observations of Eckert & Carlson (1961) and Elder (1965) demonstrated 
conclusively that, in tall slender cavities ( L  < l ) ,  the core is vertically stratified. Later 
Singh & Cowling (1963) and Gill (1966) in analytical studies, and de Vahl Davis (1968) 
in a numerical study showed that for R 3 O( lo5) the boundary layers on the vertical 
walls were compatible with a core which is vertically stratified. The stability of a 
Hadley cell was originally discussed by Hart (1972) who showed that for rigid con- 
ducting boundaries the transverse modes were always the most unstable. Two types 
of instability were found to occur, a convective instability when > 0.05 and a shear 
instability when a < 0.05. More recently, Gill (1974) extended Hart's analysis to the 
limit CT-+ 0,  and predict'ed that oscillatory behaviour would occur beyond a critical 
Rayleigh number R, > 1030. Also in 1974 Cormack, Leal & Imberger developed an 
end-wall correction for the Hadley cell. These authors found that for large but finite 
aspect ratio cavities the core stream function is proportional to that of the Hadley 
solution. The proportionality constant K is given by 

K = 1 - 3.48 x 10-6R2L-'. 

Since t'he correction term must be small compared to unity the Hadley-cell description 
is valid when L is> 3.48 x 10-6R2. 

A number of experimental studies have demonstrated that thermal oscillations 
occur in low-Prandtl-number fluids when a critical value of the Rayleigh number is 
exceeded. Observations have been reported for sodium chloride (Utech & Flemings 
1966)) mercury (Pamplin & Bolt 1976)) tin (Cole & Winegard 1964), gallium (Hurle, 
Jakeman & Johnson 1974) and indium antimonide (Miiller & Wilhelm 1964). Hurle 
(1966) has reported on the relationship of such thermal oscillations to undesirable 
growth striae that occur in the manufacture of some semi-conductor materials. Some 
of these observers have also noted the strong dependence of the periodicity of the 
oscillations on the aspect ratio. Hurle et al. (1974) in particular have found that the 
periodicity is proportional to  the aspect ratio. In  these latter experiments L 2 3 and 
the critical Rayleigh number was observed to be approximately 3.5 x lo3. The Hadley 
approximation is inappropriate for these conditions, since it follows from equation (1.1) 
that  L 3 40. In  fact in most crystal-growth applications L is too small for the 
Hadley approximation to be valid. Consequently, the Gill (1974) stability analysis, 
which represents the limiting behaviour as L --f co, is also inappropriate. 

The results presented here demonstrate that the natural convection in a confined 
cavity due to a horizontal temperature gradient is significantly different when the 
aspect ratio Lis> 1 from that when L <  1, once a critical Rayleigh number R, is 
exceeded. Here, the aspect ratio L = E/h, where 1 is the length and h is the height of the 
cavity. The difference between these two states is easily seen by comparing the photo- 

(1 .1 )  
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graphs taken by Elder (1965) with those presented here a t  supercritical Rayleigh 
numbers. Beyond R, the steady unicellular flow breaks down into a series of vertically 
aligned rolls when L < 1, whereas when L > 1 rolls are observed only close to the end 
walls; these intensify with increasing R but do not extend further into the core. 

2. Theoretical background 
The principal work on the steady convection in an enclosed cavity due to a horizontal 

temperature gradient is by Gill (1966). When the Rayleigh number is large, boundary 
layers exist on the vertical end walls of the cavity. Gill (1966) showed that after 
appropriate scalings are introduced neither the boundary-layer nor the core solution 
are, to first order, dependent on R or L. In  the high-Rayleigh-number limit the core 
temperature is vertically stratified, i.e. T = Tm(z), rather than isothermal as Batchelor 
(1954) had assumed. Further Gill showed that the vertical boundary layers are 
O[RtL-tl] in thickness and have a characteristic velocity O[R&L$K/~]. For the 
analysis to be valid, the boundary-layer thickness must be small compared with the 
cavity length. In  the present notation this criterion is satisfied when 

11.5R-2L-Z < 1.  (2 .1)  

A crucial assumption in the solution given by Gill (1966) is that the effect of the 
flow near the horizontal surfaces is negligible. Physically, this assumption implies 
that most of the fluid in the vertical boundary layers empties into the core. For 
cavities of aspect ratio L < 1 the assumption is plausible, since the flow is pre- 
dominantly vertical. However, when L > 1 the flow is essentially horizontal, except 
near the end walls. An active role is still played by the vertical boundary layers but 
intuitively it would seem that for constant R the role of the horizontal layers would 
increase proportionately with the aspect ratio L. 

The residence time of a particle in the core is a measure of the circulation time, since 
the residence time in the vertical boundary layers is small. A particle will traverse a 
cavity in a time 

t‘ = jz dx’ = O[h2L4/KRb]. 
0 u‘ 

For gallium arsenide, a semi-conductor substrate material, the thermal diffusivity 
K - 0.04 om2 s-l so that in a typical industrial crucible (I N 20 cm, h N 2.5 cm and 
R N 104) the circulation time t’ N O( 102s). This is negligible compared with the growing 
time of a crystal N 20 hours, and thus the flow in the melt can be considered to be 
steady. 

Another property of the equations and boundary conditions is that they are un- 
altered by a simultaneous change of sign of the three variables, T’ - ($TL), x’ - (41) 
and z’, while the sign of the fourth variable $ is unchanged. This is the property 
involving a reflection about the cavity centre x’ = +l, z’ = +h which Gill (1966) 
termed centro-symmetry. Thus the core temperature, T,, is an odd function and 
the core stream function, $m, an even function about x‘  = +h. In  the notation 
adopted by Blythe & Simpkins (1977) the centro-symmetry conditions are 
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z 

FIGURE 1. Analytical predictions of the core stream functions based on the boundary-layer 
equations compared with numerical solutions of the Boussinesq equations. R N lo6, L = 1. 
-- , Gill, u = CO; --, integral method, u = CO; - - -, Quon, CT = 7.1; -. .-, Stewart & 
Weinberg, u = 10. 

where x and z are the non-dimensional horizontal and vertical co-ordinates, respect- 
ively. 

The approximate forms of the Navier-Stokes equations valid in the vertical 
boundary-layer regions are, in the usual non-dimensional variables, 

u = $$, w = -$ X) ( 2 . 4 ~ )  

where T(oo,z) = T,(z) and the Boussinesq approximation has been made. It was 
shown in Blythe & Simpkins that for a - tw equations (2.4) have similarity solutions 

where 7 = x /S(z )  and S is a suitable boundary-layer thickness. A brief discussion of 
these solutions is given in appendix A. 

Both Singh & Cowling (1963), in a paper which seems to have been previously 
overlooked, and Gill (1966)) used rather simple methods to integrate the boundary- 
layer equations. Consequently, when their results are compared with numerical 
solutions of the Boussinesq equations, e.g. see Quon (1972; see also Cormack & Leal 
1974) and Stewart & Weinberg (1972), discrepancies arise which cannot be explained 
unambiguously. Recently, Blythe & Simpkins ( 1977) developed an integral method 
for solving the boundary-layer equations which improved on the earlier results. Good 
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agreement between the numerical predictions and the integral method was found 
for the temperature distribution but a discrepancy in the core stream-function dis- 
tribution remained unresolved. Figure 1 shows the differences between the analytical 
solutions of the boundary-layer equations and the numerical solutions of the Boussi- 
nesq equations for R N 0(1O6) and L = 1. The non-dimensional core stream function, 
$a, is defined as 

where b is a constant determined from the boundary-layer profile. Throughout this 
paper the constant', b = 0.630, corresponds to the similarity solution 

F ( 7 )  = 2e-7 sin y, 

see appendix A. The discrepancy between the integral method and the numerical 
results has been attributed to the boundary-layer approximation of the Boussinesq 
equations. Simpkins & Blythe (1980) demonstrated this by applying the integral 
technique to the equivalent problem for a fluid-saturated porous medium for which 
numerical solutions to the boundary-layer equations had been given by Walker & 
Homsy (1978). In  this case the core stream-function distribution predicted by the 
integral method for three boundary-layer profiles was in excellent agreement with the 
numerical solutions. 

Another simplification in the Gill (1966) analysis, the assumption that the horizontal 
boundary layers may be neglected, has been questioned by Quon (1972; see also 
Cormack & Leal 1974). Although the boundary conditions $ = 0 a t  z = 0 , 1  are exact 
for the Boussinesq equations, it is not clear ab initio that the core will satisfy these 
conditions. Solutions based on the boundary-layer assumption have singularities a t  
z = 0,1  leading to infinite vertical temperature gradients and infinite horizontal 
velocity components at these boundaries. Quon (1972) used various boundary con- 
ditions on the horizontal surfaces to examine their effect on the vertical boundary- 
layer and core solutions, and found that such changes produced only second-order 
effects. Thus, Quon was unable to attribute the large discrepancy he found in the core 
stream function compared with Gill, see figure 1 ,  to variations in the horizontal 
boundary conditions. Quon (1972, 1977) and Roux et al. (1978) have discussed various 
ways of choosing a value for the free constant C used in the Gill analysis to improve 
the solution. None of these approaches were completely successful. 

Matching betwsen the flow in the vertical boundary layers and the core, far from the 
corners, is now understood for large-Prandtl-number fluids. In this case the boundary 
layers on the horizontal walls do not play an important role. However, no scaling of the 
governing equations for the structure near the horizontal walls has been given that is 
consistent with the core behaviour. This difficulty is amplified when small- or moderate- 
Prandtl-number fluids are considered because the core structure is then strongly 
dependent on the horizontal matching conditions. Such flows are predominantly 
associated with molten metals and semi-conductor materials. Before an appropriate 
stability analysis can be undertaken, therefore, more realistic representations of the 
steady-state flow fields in the various Prandtl-number regimes must be developed. 
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FIGURE 2. Schematic representation of the experimental apparatus. 

3. Experimental methods 
The convective motions under investigation were established in an enclosed rect- 

angular cavity (see figure 2 )  the vertical end walls of which could be laterally adjusted 
to alter the cavity length. The height, h, and breadth, b,  of the cavity were fixed at  
20 mm and 50 mm, respectively. The end walls were made from solid copper blocks 
with individual copper chambers behind them that were encased in insulating foam. 
These assemblies are referred to as thermodes. Water at constant temperature was 
pumped from two thermostatically controlled baths through the end-wall thermodes, 
thus allowing a temperature difference AT to be maintained across the cavity to 
within an accuracy of f 0.25 "C. The top and bottom surfaces of the cavity were 2 mm 
glass plates covered with a t  least 3 cm of polystyrene insulation. A slit in the bottom 
insulator midway across the breadth of the cavity allowed a collimated sheet of light 
into the interior for illumination. The side walls were 2 mm thick glass plate that were 
externally insulated; a small removable section on one of the lateral insulating walls 
allowed access for visual observations. 

In  these studies the test fluids used were silicone oils with viscosities of 10, 100, 500 
and 1000 cSt om2 s-l); their physical properties are tabulated in appendix B. 
Such viscous oils also have large Prandtl numbers. To be consistent with the 'sim- 
plified ' Boussinesq approximation the physical properties of the fluids should be 
independent of the temperature and aAT < 1 (Joseph 1976). With the exception of 
the variation of viscosity with temperature, which is significant, these requirements 
are satisfied. Unless otherwise stated the Rayleigh numbers quoted in the results are 
computed with the viscosity data evaluated for convenience a t  25 "C, as given by the 
manufacturer. At some of the larger values of AT the local viscosity near the hot wall 
is significantly reduced and noticeable asymmetries develop in the flow. At the largest 
Rayleigh numbers examined, the temperature difference AT across the end walls is 
about 80 "C. At the cold wall temperature, the viscosity is then four times greater than 
the viscosity a t  the hot wall temperature. However, since the important parameter 
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in the vertical boundary-layers solutions is Rf, the significance of the variations 
in v is reduced to a maximum of & 20 % about a mean value. 

The finite breadth of the cavity leads to another departure from the idealized two- 
dimensional flow field. Elder (1965) has noted, however, that for sufficiently large R 
the motion is closely two-dimensional even when l / b  = 1. The relevant parameter is 
S*/b, where S* is a boundary-layer thickness. Provided this ratio is small, three- 
dimensional effects are negligible away from the side walls. In  the work reported all 
data were taken midway across the cavity. The thickness of the illuminated plane was 
restricted to about 2 mm, which was substantially greater than the depth of field of 
the recording instruments. 

Flow-visualization studies were performed with cavities of aspect ratio 0.25 < L < 9 
for a variety of Rayleigh numbers. Various tracer elements were used to provide the 
side scattering of the illuminating sheet of light. These included aluminium powder, 
styrene particles, and latex paint. The choice of tracer material depended on the 
viscosity of the fluid in the cavity. An f2.8, 50 rnm lens, set for a magnification of 
about two, was used to record the flow fields. Exposure times for the photographs, 
taken with 3000 ASA Polaroid film, were typically between 15 and 30 s. Steady-state 
conditions were examined for periods up to 24 h. In  general it  was found that the flow 
in the silicone oils responded to a temperature change in approximately 0.5 h. 

Local measurements of the velocity components were obtained by recording the 
transit time of a particle over a known distance. Particles were observed with a 
travelling microscope, through which motions over a distance as small as 0.12 mm 
could be observed. Time intervals were taken with a digital clock accurate to 0.01 s 
and the (x, z) location of the microscope was controlled by micrometers with vernier 
scales. Generally, the shear profile data were recorded only at the mid-plane of the 
cavity. However, for one particular aspect ratio, L = 4, observations were made a t  
other lateral positions equidistant from the mid-plane. 

Measurements of the velocity distribution across the depth of the cell have been 
made for aspect ratios of 1 , 2 , 4  and 8.9. These data were recorded for various Rayleigh 
numbers, and an effort was made to obtain the same value of R with different aspect 
ratios. Sometimes this was accomplished by changing the fluid in the cell to broaden 
the viscosity range. Thus variations in the Prandtl number, 8, were introduced in 
some tests. The effect of this variation in 8 on the velocity distributions is expected 
to be small because all of the liquids used have Prandtl numbers greater than ten. 
Quon (1972) has shown that c > 10 is equivalent to the limiting value v+m. 

Observations of the velocity distribution in the vertical boundary layers were made 
a t  the cavity mid-height. At each position a minimum of five separate observations 
were made, and the velocity was calculated from their mean. The accuracy of these 
data is believed to be within 

One additional comment is in order. All the experiments reported satisfy the Gill 
(1966) criterion that the vertical boundary layers are small compared with the cavity 
length, i.e. RLS > 2 x lo4. Thus, the results to be discussed below are ostensibly for 
the boundary-layer regime in large-Prandtl-number fluids. Consequently, the number 
of parameters to be varied is reduced from three to two, i.e. R and L. 

2 %. 
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FIGURE 3. Streak photographs of' the flow fields in the cavities of aspect ratio L = 5, 4 and 1. 
The Rayleigh numbers in millions are (a) 2.71, (b )  1.35, (c) 0.68, ( d )  10.8, ( e )  2-71 and (f) 2.71. 
The viscosity v = 10 cSt and the cell height h = 2 cm. 

4. Results and discussion 
4. I .  Flow visualization 

Figures 3-5t show the combined effects of changing the Rayleigh number and the 
aspect ratio on the flow field in the cavity. These, and other pictures, show that when 
R < R, the primary flow field is a single cell. 

Another feature common to all the photographs is the entrainment and detrainment 
of the flow in the vertical boundary layers. Notice that on the lower half of the cold 
wall mass is ejected from the vertical boundary layer into the region adjacent to the 
horizontal surface. The horizontal layer converges toward the lower corner of the hot 

t In all the photographs the cold wall is on the left and the hot wall on the right of the 
pictures. 
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wall and is then swept upward into the vertical boundary layer. Similar features are 
to be seen at  the upper half of the hot wall, illustrating the centro-symmetry pointed 
out by Gill. In figure 3 the flow in the narrowest cavity ( L  = 0.25) remains a single cell 
up to R = 1-08 x 107. This observation is consistent with Elder’s data where secondary 
flows were found to occur for RL4 2: 3 x lo5 & 30 yo in a cavity with L = 0.0526. When 
L = 0-5 a weak secondary flow appears at  R = 1.35 x lo6 and intensifies into a distinct 
vortex structure by R = 2-71 x 106. Note that two elongated vortices occur parallel to 
the vertical walls and are embedded in the primary circulation. When L is increased to 
unity the secondary flow becomes evident at  R = 6.8 x lo5. The motion in these vortices 
intensifies with increasing Runtil at  R = 2.71 x lo6 a subsidiarypair ofvortices develops 
within each roll of the secondary flow. In  figure 3 the effect of aspect ratio variations 
on the flow at fixed R ( = 2.71 x 106) are clearly seen. Within the boundary-layer regime, 
where (RL5)@25 > 11.5, the layers adjacent to the vertical walls are obviously much 
thinner than those along the horizontal surfaces. The very slow motion that occurs 
in the core is evident from the individual particles which are almost stationary. In 
the corner regions the scale on which the flow is entrained into the horizontal layers 
from the ejecting vertical boundary layers is about one quarter of the cavity height. 
These corner flows are significantly affected by the secondary motion, when it occurs, 
because the fluid is ejected almost from the mid-height region of the core. In  other 
words the vortex near the vertical wall causes the flow to turn away from the corner 
before it enters the horizontal boundary layer. 

Figure 4 shows the Rayleigh number dependence for a cavity with an aspect ratio 
of 2. The basic unicellular circulation for R - 0(104) develops a secondary flow 
about R = 6.6 x 105. Once again the secondary flow intensifies with increasing R until 
at about R = 1.8 x lo6 subsidiary vortices appear parallel to each vertical wall. At 
R = 2.9 x lo6 three vortices are evident near each vertical wall and there is significant 
two-dimensional flow in the core. The lack of centro-symmetry in the flow is attributed 
to the variation of viscosity with temperature. 

Examples of the flows at an aspect ratio L = 4 are given in figure 5. The range of R 
covers the region from predominantly unicellular motion at  R = 2.3 x lo5 into the 
secondary flow state which is well established at R = 4.5 x lo5. The flow field for 
R = 9.1 x lo5, L = 4 resembles that observed at  R = 1-17 x 106, L = 2; throughout 
most of the core region it appears to be a vertically stratified shear flow. 

4.2. The vertical boundary-layer projles 

Figure 6 shows two of the boundary-layer profiles recorded near the hot wall for differ- 
ent values of R and L. Within the experimental uncertainty the data are coincident. 
These results confirm Gill’s prediction that the solutions are independent of the 
Rayleigh number and aspect ratio. Also shown in the figure is the function F(7)  used 
by Blythe & Simpkins (1977) and the numerical prediction due to Quon (1972). The 
agreement between the integral method of Blythe & Simpkins and Quon’s numerical 
solution to the Boussinesq equations is good, but both predictions are significantly less 
than the observations when 7 < 1.0. This difference is attributable to the temperature- 
dependent viscosity which the silicone oils exhibit. If the data for v = 1000 cSt are 
evaluated with a reduced viscosity of 570 cSt based on the hot wall temperature, the 
amplitude of the velocity profile is significantly altered, see figure 7. Near the wall, 
7 < 0.5, the modified data are in good agreement with the theoretical curve, but 

1.5 P L M  I10 
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FIGURE 6. Boundary-layer observations at different Rayleigli numbers and aspect ratios com- 
pared with analytical and numerical predictions. 0, R = 2.18 x lo4, L = 1; A, R = 0.75 x 104, 
L = 4; - -, Quon, v = 1000 cSt. 

FIGURE 7. The effect of using a reduced viscosity v (at the hot-wall temperature) on the vertical 
boundary-layer observations. 0, R = 2-18 x lo4, v = 1000 cSt; 0 ,  R = 3.83 x 104, v = 
570 cSt; 7 = 1.1517, L = 1. 
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when 7 > 0.5 the discrepancy develops. As the core is approached, 7 > 1.0, the data 
evaluated with v = 1000 cSt are in better agreement with the theoretical curve. Thus, 
near the wall the viscosity is reduced because of the high temperature but, as the 
temperature decreases further from the wall, a higher viscosity is appropriate. The fact 
that the two sets of values encompass the maximum of F(7)  suggests that variable 
viscosity effects can be significant and should be accounted fop in future analyses. 

4.3. Core shear profiles 

Measurements of the velocity profiles a t  various longitudinal positions in a cavity of 
length 1 = 80 mm ( L  = 4) are shown in figure 8 for a moderate value of R. Two con- 
clusions can be drawn from these data. First, the core shear profile is, to  first order, 
independent of x. A very weak x-dependent trend is discernible in the data, but Gill's 
hypothesis that the core, to first order, is independent of R is clearly substantiated. 
Secondly, the layers near the horizontal surfaces are not vanishingly small ; indeed, 
these horizontal layers fill the cavity from top to bottom. Although the Gill criterion 
for the vertical boundary layers is satisfied this is attributable to the large value of L, 
not to the value of R. The relatively low value of the Rayleigh number suggests that 
the flow field mag' be closer to the Batchelor conduction regime than the Gill 
boundary-layer regime. These comments will be amplified below. 

When the Rayleigh number is increased t o  R = 1.35 x lo6 the core shear profiles 
have a different character, see figure 9. These data illustrate the effect of varying L 
on the centre-line shear profile at fixed R. It is apparent that in this Rayleigh-number 
regime the layers near the horizontal surfaces are separated by a core region in which 
the velocity is very small. The vertical extent of core is inversely proportional to a 
function ofthe aspect ratio, being greatest for L = 1 and progressively decreasing until 
at L = 4 the horizontal layers are almost merged. Conversely, therefore, the horizontal 

15-2 
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FIGURE 10. Comparison of the observed core shear profile with that predicted numerically, 
L = 1. -, Quon, R = 8 x lo5, d = 7.1; 0, present data, R = 7.7 rt 0.3 x lo5, d = 105. 
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FIGURE 11. The normalized stream-function distributions compared with observations. R = 
7.47 x lo5, L = 4, v = 10 cSt, AT' = 35.4 "C. z' (mm): 0, 59.6; 0 ,  39.3; A ,  19.9. ---, integral 
method (boundary-layer equations) ; *, Stewart & Weinberg (numerical). 

boundary layers are still a substantial portion of the cavity depth, and they grow with 
x, a.s might be expected. A comparison with the numerical predictions by Quon (1972) 
substantiates the present results and enhances confidence in the observations, see 
figure 10. The abscissa is the non-dimensional horizontal velocity component scaled 
with respect to RI. 

4.4. Stream-function distributions 

The stream function profiles were obtained by using a least-squares routine to fit a 
polynomial of seventh degree or higher to the velocity measurements. The curve fit 
was integrated numerically and the local stream functions were evaluated a t  the 
depths corresponding to the measurements. Figure 11 shows a plot of the stream 
function normalized with respect to its value a t  z = 4 compared with the numerical 
and integral methods. The overestimate of the analytical and numerical results is a 
manifestation of the differences in the magnitude of $(it). Plots of this type tend to be 
misleading because the disparities in the absolute values of the stream function are 
not apparent, cf. figure 1. The data do, however, illustrate the effect of centro- 
symmetry at this larger Rayleigh number. The skewness associated with the x-location 
arises because near the cold wall (x = 0) the horizontal layer near the bottom of the 
cell (z  = 0) is thicker and the flow, therefore, slower than a t  the top of the cell ( z  = 1) .  
Near the hot wall the reverse situation occurs. Similar characteristics are apparent 
from the velocity measurements, see figure 12. 

Figure 13 shows the core stream function $a, variation with R a t  fixed L. Except 
for the results a t  R = 3-13  x lo4, the trend of the data indicates that $r,($) is inversely 
proportional to a function of R. The agreement between the observations and the 
numerical calculations of Stewart & Weinberg (1972)  at two different values of R is 
good. For aspect ratios larger than unity the observations show that the core stream 
function @a,(z) increases as R increases, see figures 14 and 15. It is apparent that 
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FIGURE 12. Velocity distribution as a function of location, R = 7.47 x lo5, L = 4, AT = 35.4 "C, 
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FIUIJRE 13. Absolute values of the core stream function for different Rayleigh numbers, L = 1.  
( R ,  Y, AT):  0,  ( 3 . 1 3 ~  lo4, 100, 4.50); 0, ( 6 . 1 6 ~  lo4, 100, 8.85); 0, (1.23 x lo5, 100, 17.70); 
A ,  (3.67 x lo5, 10, 4.43); A, (7.34 x lo5, 10, 8.85); v,  (1.47 x lo6, 10, 17.75). Stewart & Wein- 
berg, c = 10: - - -, R = 2 x lo5; --, R = 2 x lo8. 
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these data represent some other regime than that given in figure 13 since the vari- 
ation of $m with R in the two cases is opposite. Figure 16 shows a similar increase 
in the core stream function when R is constant and L increases. In each of these 
figures the numerical results due to Quon (L = 1 ,  R = 8 x lo5) are given as a reference, 
not for quantitative comparison. 

A composite plot, of $=(&) versus R with L as a parameter is given in figure 17 
together with a numerical prediction of de Vahl Davis (1968). The data illustrate the 
existence of two distinct regimes. For a given value of L it can be seen that for 
R - O(lOs) the magnitude of $m(i) is only weakly R-dependent. However, when 
R - 0(104) increases rapidly in proportion to R. In this latter region the 
effects on conduction are significant. Batchelor (1954) proposed that when the flow 
field is conduction-dominated (R+O) the stream function can be expanded in a 
power series, the leading term of which is given by 

$; N R[1+ ( 1/L)4]-'. 

Thus, in the present. notation 

for L 9 1. Hence when conduction is significant the tendency is for $m N $iR-f to 
increase with R. This trend is different from the behaviour in the boundary-layer 
regime, where $m decreases slowly as R increases. 
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Examination of the results computed by Stewart & Weinberg (1972) for L = 1 
reveals t,hat conduction effects are significant for values of R at  least 0(104),  see 
their figures 3 and 4. The data presented in figure 17 indicate that for the two largest 
aspect ratios there is little L-dependence in this region. Within the experimental 
scatter the two sets of data appear to be coincident, but have a gradient different 
from that given by de Vahl Davis (1968). The present observations correlate with the 
relationship $m(&) N 0.06R0'3, whereas the linear regime of the prediction given by 
de Vahl Davis behaves as $,(&) - 0.0035R062. Further, it is found that scaling $,(&) 
by L-4 reduces the core mass flux in the boundary-layer regime to a constant: this 
scaling differs from that used in § 2. 

In contrast to the Batchelor model, the boundary-layer-regime models (i.e. Singh 
& Cowling 1963; Gill 1966; Blythe & Simpkins 1977) make a directly opposite assump- 
tion, namely that the mass flux in the vertical boundary layers is large. These models 
lead to a core flow field which is vertically stratified and sheared, consistent with the 
experimental observations in cavities for L 1 (see Eokert & Carlson 1961; Elder 
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1965; Seki, Fukusako & Inaba 1978). The solutions for the vertical boundary layer 
and the core in this regime are, to first-order, independent of R and L in the limit 
g 9 1, as noted earlier. The experimental results a t  fixed R and CT are strongly 
L-dependent, for L > 1, which suggests that the effect of the boundary layers on the 
horizontal walls cannot be neglected when the motion is predominantly horizontal. 
Even in the boundary-layer regime, R > O( I@), where $ is only a weak function of 
R, the aspect ratio dependence is most pronounced. It would appear, therefore, that, 
for L > 1 ,  the horizontal layers impose a more stringent constraint on the limitations 
of the boundary-layer regime than that suggested by Gill. The observations at fixed L, 
which show $ to be only a weak function of Rayleigh number and lateral position, 
agree with the boundary-layer models for which $a = $ ( z )  in the core. Furthermore 
the results in figure 13,  which include those given in figure 10, imply that the horizontal 
boundary layers get thinner as R+co a t  constant L. Consequently, the influence of 
the horizontal boundary layers on the core in such circumstances is reduced. However, 
it is conceivable that a transition to turbulence might occur before this limit is achieved 
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when L > 1.  The weak R-dependence observed in figure 17 for R > lo5 represents a 
second-order correction to the boundary-layer models. 

4.5. The transitional flow jield 

Experiments complementary to those under discussion have been reported by Elder 
(1  965) and Seki et al. (1978) for the limiting case L < 1.  All of that work has found 
that for R < lo3 the basic flow structure is a single two-dimensional cell. For R > lo3 
some similarities occur between the present observations and the earlier work, but 
there are also noticeable differences. Perhaps the most substantial difference between 
the observations is the form of the secondary flows that develop with increasing 
Rayleigh number. When L << 1 the unicellular structure degenerates into a secondary 
flow composed of a series of vertically aligned parallel rolls that completely fill 
the core. As the Rayleigh number is increased further the weak shear layer between 
successive secondary rolls develops a tertiary flow in the form of a weak vortex. 
The circulation in the primary and secondary flows is in the same direction and in the 
opposite sense to that in the tertiary vortices. 

In the present observations the secondary flow that develops takes the form of two 
horizontally aligned parallel rolls that, in general, do not fill the core. An exception 
occurs when L = 4, where the core is observed to be initially filled by the secondary 
flow. At the other aspect ratios where the secondary flows were observed the core 
ultimately appears to develop into a turbulent state as R increases. There is no 
evidence of more than two secondary rolls appearing when the aspect ratio is increased. 
Within the limits of this study therefore the situation equivalent to the L < 1 limit, 
for which there might appear successive secondary rolls aligned horizontally, has not 
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been observed. Rather, the secondary rolls remain near the outer edges of the vertical 
boundary layers and the motion between them becomes disordered. As the Rayleigh 
number increases subsidiary vorticest appear with the secondary rolls and their effect 
on the core flow becomes more and more pronounced as they intensify. This behaviour 
is illustrated in the photographs of figure 4 when R > 106. The circulation in both the 
primary and secondary flows is in the same direction. After the onset of the subsidiary 
motion some of the circulation is in the opposite sense as the transition to turbulence 
develops. Seki et al. (1978) refer to this state as a transitional regime. They have 
observed the intense subsidiary vortices near the vertical walls of a cavity when 
L = 0.167 and R N O(10lO). 

Elder suggests that the secondary motion occurs in slender cavities at  a critical 

R,L4- 3 ~ 1 0 ~ + 3 0 ~ ~ .  
Rayleigh number given by 

The measurements of Seki et al., also for slender cavities, are in reasonable agreement 
with Elder’s prediction. The present experimental observations do not correlate with 
the above expression when L 3 1. In these cases the critical Rayleigh number at  
which secondary rolls near the vertical walls occur, is given by 

R , L ~  6.4 x 105 loyo, 
which has an aspect-ratio dependence different from the slender cavity data. It should 
again be emphasized, however, that the motion in the cavity at supercritical Rayleigh 
numbers is quite different for L < 1 and L 3 1. 

5. Conclusions 
The results of this study of free convection in cavitieswith aspect ratios 0.25 < L < 9 

containing fluids with Prandtl numbers CT >/ 10 can be summarized as follows: 
(i) For R c O( 105) the conduction effects are significant and the core appears to be 

proportional to a function of R but independent of L. 
(ii) Gill’s prediction that, after appropriate co-ordinate scaling, the vertical boun- 

dary-layer solutions are independent of the Rayleigh number and the aspect ratio 
is confirmed. 

(iii) For R > 0(105), the primary flow field remains unicellular. When L = 1, the 
numerical results are in good agreement with the observed velocity distributions. 

(iv) In the boundary-layer regime, the scaled core stream function is proportional 
to a function of the aspect ratio and, to first order, independent of R for L > 1 .  This 
dependence is not implied by the leading-order boundary-layer approximation, which 
suggests that 1cp, is independent of R and L. Since the influence of the horizontal layers 
is neglected in the present boundary-layer models, it is suggested that the role played 
by these layers is significant when L > 1.  

(v) The critical Rayleigh number at  which secondary rolls occur does not agree 
with the Elder data for tall slender cavities. For aspect ratios L 2 1 the critical 
Rayleigh number is given by 

R , L ~  - 6 . 4 ~  105+ 10%. 

i The subsidiary vortices should not be confused with the tertiary motion described by Elder 
and Seki et al. In  that work the tertiary vortices occur in the shear layer between the successive 
rolls of the secondary motion. 
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(vi) An instability in the secondary motion develops with increasing Rayleigh 
number. Subsidiary vortices evolve near the vertical walls and a transition to  turbu- 
lence appears in the core. 

We thank Professor P. A. Blythe, Center for the Application of Mathematics, 
Lehigh University, for a number of helpful discussions. 

Appendix A. Scalings for the boundary-layer profiles 

similarity boundary-layer profiles in non-dimensional co-ordinates are given as 
The notation used below is consistent with that of Blythe & Simpkins (1977). The 

where A ( z )  = $m(z)/S(z) and 7 = x/S(z) .  In  the above expressions +m is the core 
stream function, S is a boundary-layer thickness and x is the horizontal distance from 
the vertical wall, all appropriately non-dimensionalized. To relate these normalized 
variables to the observations of the vertical velocity component w‘ a t  location and 
x’ recall the scalings used earlier: 

where K is the thermal diffusivity and h the cavity height. 
In  the similarity solutions discussed by Blythe & Simpkins, it was found that 

A ( ~ )  = - K-%*L++:T~, 

and the boundary-layer thickness 

where K = F“(O), b = K-$F”(O) and a scaling $m+L*ba+, has been introduced. 
Furthermore, the functions G(7) and H ( 7 )  in equation (2.5) are related to F(7)  by 

G ( r )  = 1 - {F”(r)/F”(O)) 

and 

Note also that F(7)  is normalized such that 

H ( 7 )  = 1; F ( s )  ds. 

Once the function F ( 7 )  is chosen, the constanh K and b are known and the core 
stream function and temperature can be found as shown in the earlier work. Possible 
boundary-layer profiles were discussed in Blythe & Simpkins and a suitable choice 
was found to be 

F ( r )  = 2e-Vsin7, 
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= 0.941, which is used in $ 2 .  For this profile a = 0.25, 6 = 0.630, K = 4 and 
which therefore give the boundary-layer thickness 

S(4) = 1.746L-3. 

Thus the appropriate scalings are given by 

7 = z/S = 0=573(RL)a(z'/h),  

and F(7f = 2*624(RL)-* ( ~ w ' / K ) .  

Appendix B. Physical properties of the silicone oils 
The fluids used in the experiments are commercially available Union Carbide L-45 

silicone oils. The table below is a reduced version of Bulletin no. F-42033A (Union 
Carbide Corp. 1970). The specific heat information, C,, is taken from an earlier 
Bulletin no. PIB45-28 ( 1  965). The dynamic viscosity, thermal diffusivity and Prandtl 
number are computed from the preceding properties. 

v x  1 0 2  P a x  lo3 k x  l o 4  c, K X  103 
(cm2 s-1) (E c n -  3, ("C-l) (cal cm-l "C-l) (cal g-l "C-l) (cmz s-1) 

10 0.94 1.08 3.06 0.34 0.957 
100 0.97 0.97 3.55 0.35 1.046 
500 0.973 0.97 3.63 0.35 1.066 

1000 0.973 0.97 3.63 0.37 1.008 

Typical properties of Union Carbide Silicone fluid L-45 at 25 "C. 
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